Projetos de ciência de dados com Python foi pensado para oferecer orientação prática sobre ferramentas padrão para análise de dados e machine learning em Python com a ajuda de dados reais. O curso o ajudará a entender como usar pandas e o Matplotlib para examinar criticamente um dataset com sínteses estatísticas e gráficos e extrair os insights que deseja obter.
Obtenha o livro Projetos de Ciência de Dados com Python
Você continuará adquirindo conhecimento ao aprender a preparar dados e a fornecê-los para algoritmos de machine learning, como o de regressão logística regularizada e o de floresta aleatória, usando o pacote scikit-learn. Também aprenderá como ajustar algoritmos para fornecer as melhores previsões sobre dados novos não conhecidos. À medida que percorrer os capítulos mais avançados, conhecerá o funcionamento e a saída desses algoritmos e entenderá melhor não só os recursos preditivos dos modelos, mas também o que os leva a fazer essas previsões.
Obtenha o livro Projetos de Ciência de Dados com Python
Você continuará adquirindo conhecimento ao aprender a preparar dados e a fornecê-los para algoritmos de machine learning, como o de regressão logística regularizada e o de floresta aleatória, usando o pacote scikit-learn. Também aprenderá como ajustar algoritmos para fornecer as melhores previsões sobre dados novos não conhecidos. À medida que percorrer os capítulos mais avançados, conhecerá o funcionamento e a saída desses algoritmos e entenderá melhor não só os recursos preditivos dos modelos, mas também o que os leva a fazer essas previsões.
No fim do curso, você terá as habilidades necessárias para usar confiantemente vários algoritmos de machine learning a fim de executar análises de dados detalhadas e extrair insights significativos dos dados.
Objetivos do livro:
• Instalação dos pacotes necessários para a definição de um ambiente de codificação de ciência de dados
• Carregamento de dados em um Jupyter Notebook executando Python
• Uso do Matplotlib para a criação de visualizações de dados
• Criação de um modelo com o uso do scikit-learn
• Uso do lasso e da regressão ridge para dedução do overfitting
• Criação e ajuste de um modelo de floresta aleatória e comparação do desempenho com o da regressão logística
• Criação de visualizações com o uso da saída do Jupyter Notebook.
SOBRE O AUTOR
Stephen Klosterman é um cientista de dados da área de machine learning na CVS Health. Ele ajuda a acomodar os problemas dentro do contexto da ciência de dados e fornece soluções de machine learning que os stakeholders empresariais entendem e valorizam. Sua formação inclui um Ph.D. em biologia na Universidade de Harvard, onde foi professor assistente do curso de ciência de dados.
Nenhum comentário:
Postar um comentário
Viu algum erro e quer compartilhar seu conhecimento? então comente aí.
Observação: somente um membro deste blog pode postar um comentário.